Linearly Decoupled Control of a Dynamic Voltage Restorer without Energy Storage

Author:

Merchan-Villalba Luis RamonORCID,Lozano-Garcia Jose MercedORCID,Avina-Cervantes Juan GabrielORCID,Estrada-Garcia Hector JavierORCID,Pizano-Martinez AlejandroORCID,Carreno-Meneses Cristian AndresORCID

Abstract

This paper presents the design of a decoupled linear control strategy for a Dynamic Voltage Restorer (DVR) that utilizes a Matrix Converter (MC) as its core element and obtains the compensation energy directly from the power system. This DVR is intended to cope with power quality problems present in supply system voltages such as balanced and unbalanced variations (sags and swells), and harmonic distortion. The dynamic model of the complete system that includes the Matrix Converter, the input filters and the electrical grid, is performed in the synchronous reference frame (dq0), to have constant signals at the fundamental frequency, in order to design the proposed linear control strategy. The coupling in the dq components of the system output signals caused by the Park Transformation, is eliminated by a change of variable proposed for the controller design, giving rise to a decoupled linear control. In this way, the strategy developed makes it possible to establish an adequate transient response for the converter in terms of convergence speed and overshoot magnitude, in addition to ensuring closed-loop system stability under bounded operating conditions. Unlike other proposals that utilize complex modulation strategies to control the MC under adverse conditions at the input terminals, in this case, the ability to generate fully controllable output voltages, regardless of the condition of the input signals, is provided by the designed linear controller. This allows the development of a multifunctional compensator with a simple control that could be of easy implementation. In order to verify the performance of the control strategy developed, and the effectiveness of the proposed DVR to mitigate the power quality problems already mentioned, several case studies are presented. The operational capacity of the MC is demonstrated by the obtained simulation results, which clearly reveals the capability of the DVR to eliminate voltage swells up to 50% and sags less than 50%. The compensation limit reached for sags is 37%. In relation to compensation for unbalanced voltage variations, the DVR manages to reduce the voltage imbalance from 11.11% to 0.37%. Finally, with regard to the operation of the DVR as an active voltage filter, the compensator is capable of reducing a THD of 20% calculated on the supply voltage, to a value of 1.53% measured at the load terminals. In the last two cases, the DVR mitigates disturbances to a level below the criteria established in the IEEE standard for power quality. Results obtained from numerical simulations performed in MATLAB/Simulink serve to validate the proposal, given that for each condition analyzed, the MC had succesfully generated the adequate compensation voltages, thus corroborating the robustness and effectiveness of the control strategy developed in this proposal.

Funder

Universidad de Guanajuato

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3