Constrained Variational-Hemivariational Inequalities on Nonconvex Star-Shaped Sets

Author:

Migórski StanisławORCID,Fengzhen Long

Abstract

In this paper, we study a class of constrained variational-hemivariational inequality problems with nonconvex sets which are star-shaped with respect to a certain ball in a reflexive Banach space. The inequality is a fully nonconvex counterpart of the variational-hemivariational inequality of elliptic type since it contains both, a convex potential and a locally Lipschitz one. Two new results on the existence of a solution are proved by a penalty method applied to a variational-hemivariational inequality penalized by the generalized directional derivative of the distance function of the constraint set. In the first existence theorem, the strong monotonicity of the governing operator and a relaxed monotonicity condition of the Clarke subgradient are assumed. In the second existence result, these two hypotheses are relaxed and a suitable hypothesis on the upper semicontinuity of the operator is adopted. In both results, the penalized problems are solved by using the Knaster, Kuratowski, and Mazurkiewicz (KKM) lemma. For a suffciently small penalty parameter, the solution to the penalized problem solves also the original one. Finally, we work out an example on the interior and boundary semipermeability problem that ilustrate the applicability of our results.

Funder

European Commission

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference32 articles.

1. A Class of Variational-Hemivariational Inequalities in Reflexive Banach Spaces

2. Variational and Quasivariational Inequalities: Applications to Free-Boundary Problems;Baiocchi,1984

3. Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity;Han,2002

4. Variational inequalities

5. Mathematical Models in Contact Mechanics;Sofonea,2012

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3