Abstract
The purpose of this paper is fourfold: (i) to introduce and study the Euler–Lagrange prolongations of flatness PDEs solutions (best approximation of flatness) via associated least squares Lagrangian densities and integral functionals on Riemannian manifolds; (ii) to analyze some decomposable multivariate dynamics represented by Euler–Lagrange PDEs of least squares Lagrangians generated by flatness PDEs and Riemannian metrics; (iii) to give examples of explicit flat extremals and non-flat approximations; (iv) to find some relations between geometric least squares Lagrangian densities.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献