Abstract
In this note, we consider a subclass H3/2(p) of starlike functions f with f″(0)=p for a prescribed p∈[0,2]. Usually, in the study of univalent functions, estimates on the Taylor coefficients, Fekete–Szegö functional or Hankel determinats are given. Another coefficient problem which has attracted considerable attention is to estimate the moduli of successive coefficients |an+1|−|an|. Recently, the related functional |an+1−an| for the initial successive coefficients has been investigated for several classes of univalent functions. We continue this study and for functions f(z)=z+∑n=2∞anzn∈H3/2(p), we investigate upper bounds of initial coefficients and the difference of moduli of successive coefficients |a3−a2| and |a4−a3|. Estimates of the functionals |a2a4−a32| and |a4−a2a3| are also derived. The obtained results expand the scope of the theoretical results related with the functional |an+1−an| for various subclasses of univalent functions.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Reference26 articles.
1. Univalent Functions;Duren,1983
2. Convex and starlike criteria
3. On the starlike criteria defined by Silverman;Obradović;Zeszyty Nauk. Politech. Rzeszowskiej Mat.,2000
4. On Successive Coefficients of Univalent Functions
5. Successive Coefficients of Starlike Functions
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献