Exploring a Convection–Diffusion–Reaction Model of the Propagation of Forest Fires: Computation of Risk Maps for Heterogeneous Environments

Author:

Bürger Raimund,Gavilán ElvisORCID,Inzunza Daniel,Mulet PepORCID,Villada Luis MiguelORCID

Abstract

The propagation of a forest fire can be described by a convection–diffusion–reaction problem in two spatial dimensions, where the unknowns are the local temperature and the portion of fuel consumed as functions of spatial position and time. This model can be solved numerically in an efficient way by a linearly implicit–explicit (IMEX) method to discretize the convection and nonlinear diffusion terms combined with a Strang-type operator splitting to handle the reaction term. This method is applied to several variants of the model with variable, nonlinear diffusion functions, where it turns out that increasing diffusivity (with respect to a given base case) significantly enlarges the portion of fuel burnt within a given time while choosing an equivalent constant diffusivity or a degenerate one produces comparable results for that quantity. In addition, the effect of spatial heterogeneity as described by a variable topography is studied. The variability of topography influences the local velocity and direction of wind. It is demonstrated how this variability affects the direction and speed of propagation of the wildfire and the location and size of the area of fuel consumed. The possibility to solve the base model efficiently is utilized for the computation of so-called risk maps. Here the risk associated with a given position in a sub-area of the computational domain is quantified by the rapidity of consumption of a given amount of fuel by a fire starting in that position. As a result, we obtain that, in comparison with the planar case and under the same wind conditions, the model predicts a higher risk for those areas where both the variability of topography (as expressed by the gradient of its height function) and the wind velocity are influential. In general, numerical simulations show that in all cases the risk map with for a non-planar topography includes areas with a reduced risk as well as such with an enhanced risk as compared to the planar case.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An interpretable wildfire spreading model for real-time predictions;Journal of Computational Science;2024-12

2. Analytical and numerical insights into wildfire dynamics: Exploring the advection–diffusion–reaction model;Computers & Mathematics with Applications;2024-03

3. Modeling Fire Hazards Induced by Volcanic Eruptions: The Case of Stromboli (Italy);Fire;2024-02-26

4. A mathematical model for the propagation of wildfires;2023 IEEE International Workshop on Metrology for Living Environment (MetroLivEnv);2023-05-29

5. An advection–diffusion–reaction model for coffee percolation;Computational and Applied Mathematics;2022-07-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3