Species- and Age-Specific Growth Reactions to Extreme Droughts of the Keystone Tree Species across Forest-Steppe and Sub-Taiga Habitats of South Siberia

Author:

Belokopytova Liliana V.ORCID,Zhirnova Dina F.,Krutovsky Konstantin V.ORCID,Mapitov Nariman B.ORCID,Vaganov Eugene A.,Babushkina Elena A.ORCID

Abstract

Over the coming decades, climate change can decrease forest productivity and stability in many semiarid regions. Tree-ring width (TRW) analysis allows estimation of tree sensitivity to droughts, including resistance (Rt) and resilience (Rc) indexes. It helps to find adaptive potential of individual trees and forest populations. On a forest stand scale, it is affected by habitat conditions and species’ ecophysiological characteristics, and on individual scale by tree genotype, age, and size. This study investigated TRW response to droughts in forest-steppe and sub-taiga of southern Siberia for keystone species Scots pine (Pinus sylvestris L.), Siberian larch (Larix sibirica Ledeb.), and silver birch (Betula pendula Roth.). Chronologies reacted positively to the Standardized Precipitation-Evapotranspiration Index (SPEI) of the previous July–September and current April–July. Depressed tree growth across region and droughts lasting over both intra-seasonal intervals were registered in 1965, 1974, and 1999. TRW-based Rt and Rc for these droughts did not reveal age- or size-related patterns. Higher growth stability indexes were observed for birch in sub-taiga and for conifers in forest-steppe. Larch at all sites had disadvantage against pine for 1965 and 1999 droughts aggravated by pest outbreaks, but adapted better to drought in 1974. Site aridity affected both tree growth stability and intensity of climatic response.

Funder

Russian Ministry of Science and Higher Education

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3