Assessment of Effective Wind Loads on Individual Plantation-Grown Forest Trees

Author:

Kolbe SvenORCID,Rentschler Felix,Frey JulianORCID,Seifert ThomasORCID,Gardiner BarryORCID,Detter AndreasORCID,Schindler Dirk

Abstract

Quantifying wind loads acting on forest trees remains a major challenge of wind-tree-interaction research. Under wind loading, trees respond with a complex motion pattern to the external forces that displace them from their rest position. To minimize the transfer of kinetic wind energy, crowns streamline to reduce the area oriented toward the flow. At the same time, the kinetic energy transferred to the trees is dissipated by vibrations of all aerial parts to a different degree. This study proposes a method to estimate the effective wind load acting on plantation-grown Scots pine trees. It evaluates the hypothesis that the effective wind load acting on the sample trees can be estimated using static, non-destructive pulling tests, using measurements of stem tilt under natural wind conditions and static, non-destructive pulling tests. While the analysis of wind-induced stem displacement reconstructs the temporal tree response dynamics to the effective wind load, results from the pulling tests enable the effective wind load quantification. Since wind-induced stem displacement correlates strongly with the sample trees’ diameter at breast height, the effective wind load estimation can be applied to all other trees in the studied stand for which diameter data is available. We think the method is suitable for estimating the effective wind load acting on trees whose wind-induced response is dominated by sway in the fundamental mode.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Forestry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3