Potential of Measure App in Estimating Log Biometrics: A Comparison with Conventional Log Measurement

Author:

Borz Stelian AlexandruORCID,Morocho Toaza Jenny Magaly,Forkuo Gabriel Osei,Marcu Marina ViorelaORCID

Abstract

Wood measurement is an important process in the wood supply chain, which requires advanced solutions to cope with the current challenges. Several general-utility measurement options have become available by the developments in LiDAR or similar-capability sensors and Augmented Reality. This study tests the accuracy of the Measure App developed by Apple, running by integration into Augmented Reality and LiDAR technologies, in estimating the main biometrics of the logs. In a first experiment (E1), an iPhone 12 Pro Max running the Measure App was used to measure the diameter at one end and the length of 267 spruce logs by a free-eye measurement approach, then reference data was obtained by taking conventional measurements on the same logs. In a second experiment (E2), an iPhone 13 Pro Max equipped with the same features was used to measure the diameter at one end and the length of 200 spruce logs by a marking-guided approach, and the reference data was obtained similar to E1. The data were compared by a Bland and Altman analysis which was complemented by the estimation of the mean absolute error (MAE), root mean squared error (RMSE) and normalized root mean square error (NRMSE). In E1, nearly 86% of phone-based log diameter measurements were within ±1 cm compared to the reference data, of which 37% represented a perfect match. Of the phone-based log length measurements, 94% were within ±5 cm compared to the reference data, of which approximately 22% represented a perfect match. MAE, RMSE, and NRMSE of the log diameter and length were of 0.68, 0.96, and 0.02 cm, and of 1.81, 2.55, and 0.10 cm, respectively. Results from E2 were better, with 95% of the phone-based log diameter agreeing within ±1 cm, of which 44% represented a perfect match. As well, 99% of the phone-based length measurements were within ±5 cm, of which approximately 27% were a perfect match. MAE, RMSE, and NRMSE of the log diameter and length were of 0.65, 0.92, and 0.03 cm, and 1.46, 1.93, and 0.04 cm, respectively. The results indicated a high potential of replacing the conventional measurements for non-piled logs of ca. 3 m in length, but the applicability of phone-based measurement could be readily extended to log-end diameter measurement of the piled wood. Further studies could check if the accuracy of measurements would be enhanced by larger samples and if the approach has good replicability. Finding a balance between capability and measurement accuracy by extending the study to longer log lengths, different species and operating conditions would be important to characterize the technical limitations of the tested method.

Funder

Romanian Ministry of Education and Research, CNCS – UEFISCDI

Publisher

MDPI AG

Subject

Forestry

Reference38 articles.

1. Tehnologia Exploatării Lemnului;Oprea,2008

2. Timber harvesting methods in Eastern European countries: A review;Moskalik;Croat. J. For. Eng.,2017

3. Challenges in Forestry and Forest Engineering

4. Worldwide trends in methods for harvesting and extracting industrial roundwood

5. A survey of the skidder fleet of Central, Eastern and Southern Europe

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3