Melatonin Attenuates Oxidative Stress-Induced Apoptosis of Bovine Ovarian Granulosa Cells by Promoting Mitophagy via SIRT1/FoxO1 Signaling Pathway

Author:

Xu Gaoqing123,Dong Yangyunyi123,Wang Zhe123,Ding He123,Wang Jun123,Zhao Jing123,Liu Hongyu123,Lv Wenfa123

Affiliation:

1. Jilin Provincial International Joint Research Center of Animal Breeding & Reproduction Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China

2. Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China

3. Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China

Abstract

Oxidative-stress-induced apoptosis of granulosa cells is considered to be a main driver of follicular atresia. Increasing evidence suggests a protective effect of melatonin against oxidative damage but the mechanism remains unclear. The aim of this study is to investigate the effects of melatonin on mitophagy and apoptosis of bovine ovarian granulosa cells under oxidative stress, and to clarify the mechanism. Our results indicate that melatonin inhibited H2O2-induced apoptosis and mitochondrial injury of bovine ovarian granulosa cells, as revealed by decreased apoptosis rate, reactive oxygen species (ROS) levels, Ca2+ concentration, and cytochrome C release and increased mitochondrial membrane potential (ΔΨm). Simultaneously, melatonin promoted mitophagy of bovine ovarian granulosa cells through increasing the expression of PTEN-induced putative kinase 1 (PINK1), PARKIN, BECLIN1, and LC3II/LC3I; decreasing the expression of sequestosome 1 (SQSMT1); and promoting mitophagosome and lysosome fusion. After treatment with a mitophagy inhibitor CsA, we found that melatonin alleviated apoptosis and mitochondrial injury through promoting mitophagy in bovine ovarian granulosa cells. Furthermore, melatonin promoted the expression of silent information regulator 1 (SIRT1) and decreased the expression level of forkhead transcription factors class O (type1) (FoxO1). By treatment with an SIRT1 inhibitor EX527 or FoxO1 overexpression, the promotion of melatonin on mitophagy as well as the inhibition on mitochondrial injury and apoptosis were reversed in bovine ovarian granulosa cells. In conclusion, our results suggest that melatonin could promote mitophagy to attenuate oxidative-stress-induced apoptosis and mitochondrial injury of bovine ovarian granulosa cells via the SIRT1/FoxO1 signaling pathway.

Funder

National Natural Science Foundation of China

China Agriculture Research System of MOF and MARA

the fourth bootstrapping project for young scientific talents in Jilin Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3