Methylation Profile of Small Breast Cancer Tumors Evaluated by Modified MS–HRM

Author:

Krasnyi Aleksey M.1ORCID,Sadekova Alsu A.12,Kometova Vlada V.1ORCID,Rodionov Valeriy V.1ORCID,Yarotskaya Ekaterina L.1,Sukhikh Gennadiy T.13

Affiliation:

1. National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia

2. Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia

3. Department of Obstetrics, Gynecology, Perinatology and Reproductology, First Moscow State Medical University Named after I.M. Sechenov, 119991 Moscow, Russia

Abstract

The DNA methylation profile of breast cancer differs from that in healthy tissues and can be used as a diagnostic and prognostic biomarker. Aim of this study: To compare the levels of gene methylation in small malignant breast cancer tumors (<2 cm), in healthy tissue, and in fibroadenoma, and to evaluate the effectiveness of the modified Methylation Sensitive–High Resolution Melting (MS–HRM) method for this analysis. Analysis was performed using the modified MS–HRM method. For validation, the methylation levels of five genes were confirmed by pyrosequencing. The main study group included 96 breast cancer samples and the control group included 24 fibroadenoma samples and 24 healthy tissue samples obtained from patients with fibroadenoma. Breast cancer samples were divided into two subgroups (test set and validation set). The methylation of the following 15 genes was studied: MAST1, PRDM14, ZNF177, DNM2, SSH1, AP2M1, CACNA1E, CPEB4, DLGAP2, CCDC181, GCM2, ITPRIPL1, POM121L2, KCNQ1, and TIMP3. Significant differences in the validation set of samples were found for seven genes; the combination of the four genes GCM2, ITPRIPL1, CACNA1E, DLGAP2 (AUC = 0.99) showed the highest diagnostic value based on logistic regression for all breast cancer samples. Our modified MS–HRM method demonstrated that small breast cancer tumors have a specific DNA methylation profile that distinguishes them from healthy tissues and benign proliferative lesions.

Funder

Study of gene methylation in blood plasma for the early diagnosis of breast cancer

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3