High Prevalence of Plasmid-Mediated Quinolone Resistance among ESBL/AmpC-Producing Enterobacterales from Free-Living Birds in Poland

Author:

Furmanek-Blaszk Beata1,Sektas Marian1,Rybak Bartosz2ORCID

Affiliation:

1. Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland

2. Department of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Debowa Str. 23A, 80-204 Gdansk, Poland

Abstract

In this study, we investigated the occurrence of plasmid-mediated quinolone resistance (PMQR) in extended-spectrum β-lactamase- (ESBL) and/or AmpC-type β-lactamase-producing Enterobacterales isolates from free-living birds in Poland. The prevalence of the qnrB19 gene was 63%, and the distribution of isolates in terms of bacterial species was as follows: 67% (22/33) corresponded to Escherichia coli, 83% (5/6) to Rahnella aquatilis, 44% (4/9) to Enterobacter cloacae and 33% (1/3) to Klebsiella pneumoniae. The qnrB19 gene was also found in a single isolate of Citrobacter freundii. The molecular characteristics of qnrB19-positive isolates pointed to extended-spectrum beta lactamase CTX-M as the most prevalent one (89%) followed by TEM (47%), AmpC (37%) and SHV (16%). This study demonstrates the widespread occurrence of PMQR-positive and ESBL/AmpC-producing Enterobacterales isolates in fecal samples from wild birds. In this work, plasmid pAM1 isolated from Escherichia coli strain SN25556 was completely sequenced. This plasmid is 3191 nucleotides long and carries the qnrB19 gene, which mediates decreased susceptibility to quinolones. It shares extensive homology with other previously described small qnrB19-harboring plasmids. The nucleotide sequence of pAM1 showed a variable region flanked by an oriT locus and a Xer recombination site. The presence of a putative recombination site was detected, suggesting that interplasmid recombination events might have played a role in the development of pAM1. Our results highlight the broad geographical spread of ColE-type Qnr resistance plasmids in clinical and environmental isolates of Enterobacterales. As expected from the results of phenotypic susceptibility testing, no resistance genes other than qnrB19 were identified.

Funder

University of Gdansk

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference57 articles.

1. Transferable mechanisms of quinolone resistance from 1998 onward;Ruiz;Clin. Microbiol. Rev.,2019

2. Mechanism of plasmid-mediated quinolone resistance;Tran;Proc. Natl. Acad. Sci. USA,2002

3. Plasmid-mediated quinolone resistance;Cano;Expert Rev. Anti. Infect. Ther.,2008

4. Plasmid-mediated quinolone resistance;Jacoby;Microbiol. Spectr.,2014

5. Quinolone resistance from a transferable plasmid;Pascual;Lancet,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3