Unraveling the Molecular Puzzle: Exploring Gene Networks across Diverse EMT Status of Cell Lines

Author:

Park Heewon1

Affiliation:

1. School of Mathematics, Statistics and Data Science, Sungshin Women’s University, Seoul 02844, Republic of Korea

Abstract

Understanding complex disease mechanisms requires a comprehensive understanding of the gene regulatory networks, as complex diseases are often characterized by the dysregulation and dysfunction of molecular networks, rather than abnormalities in single genes. Specifically, the exploration of cell line-specific gene networks can provide essential clues for precision medicine, as this methodology can uncover molecular interplays specific to particular cell line statuses, such as drug sensitivity, cancer progression, etc. In this article, we provide a comprehensive review of computational strategies for cell line-specific gene network analysis: (1) cell line-specific gene regulatory network estimation and analysis of gene networks under varying epithelial–mesenchymal transition (EMT) statuses of cell lines; and (2) an explainable artificial intelligence approach for interpreting the estimated massive multiple EMT-status-specific gene networks. The objective of this review is to help readers grasp the concept of computational network biology, which holds significant implications for precision medicine by offering crucial clues.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference61 articles.

1. A survey of neural network-based cancer prediction models from microarray data;Daoud;Artif. Intell. Med.,2019

2. Network-based prediction of drug combinations;Cheng;Nat. Commun.,2019

3. Fout, A., Byrd, J., Shariat, B., and Ben-Hur, A. Proceedings of the NIPS’17: Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017.

4. Shimamura, T., Imoto, S., Shimada, Y., Hosono, Y., Niida, A., Nagasaki, M., Yamaguchi, R., Takahashi, T., and Miyano, S. (2011). A novel network profiling analysis reveals system changes in epithelial-mesenchymal transition. PLoS ONE, 6.

5. Gene regulatory networks and their applications: Understanding biological and medical problems in terms of networks;Dehmer;Front. Cell Dev. Biol.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3