Extra Virgin Olive Oil-Based Formulations: A “Green” Strategy against Chlamydia trachomatis

Author:

Di Pietro Marisa1ORCID,Filardo Simone1ORCID,Mattioli Roberto2ORCID,Bozzuto Giuseppina3ORCID,Molinari Agnese3,Mosca Luciana2ORCID,Sessa Rosa1

Affiliation:

1. Department of Public Health and Infectious Diseases, Section of Microbiology, Sapienza University of Rome, 00185 Rome, Italy

2. Department of Biochemical Sciences, Faculty of Pharmacy and Medicine, Sapienza University of Rome, 00185 Rome, Italy

3. National Centre for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy

Abstract

In recent decades, antibiotic misuse has emerged as an important risk factor for the appearance of multi-drug-resistant bacteria, and, recently, antimicrobial resistance has also been described in Chlamydia trachomatis as the leading cause of bacterial sexually transmitted diseases worldwide. Herein, we investigated, for the first time, the antibacterial activity against C. trachomatis of a polyphenolic extract of extra virgin olive oil (EVOO), alongside purified oleocanthal and oleacein, two of its main components, in natural deep eutectic solvent (NaDES), a biocompatible solvent. The anti-chlamydial activity of olive-oil polyphenols (OOPs) was tested in the different phases of chlamydial developmental cycle by using an in vitro infection model. Transmission and scanning electron microscopy analysis were performed for investigating potential alterations of adhesion and invasion, as well as morphology, of chlamydial elementary bodies (EBs) to host cells. The main result of our study is the anti-bacterial activity of OOPs towards C. trachomatis EBs down to a total polyphenol concentration of 1.7 μg/mL, as shown by a statistically significant decrease (93.53%) of the total number of chlamydial-inclusion-forming units (p < 0.0001). Transmission and scanning electron microscopy analysis supported its anti-chlamydial effect, suggesting that OOP might damage the chlamydial outer layers, impairing their structural integrity and hindering EB capability to infect the host cell. In conclusion, OOPs may represent an interesting alternative therapeutic option toward C. trachomatis, although further studies are necessary for exploring its clinical applications.

Funder

University of Rome “Sapienza”

FSE REACT-EU

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3