Bta-miR-484 Targets SFRP1 and Affects Preadipocytes Proliferation, Differentiation, and Apoptosis

Author:

Yang Mengli1,Gao Xiaoqian1,Hu Chunli1,Wang Shuzhe1,Sheng Hui1,Ma Yun1

Affiliation:

1. Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China

Abstract

MicroRNAs (miRNAs) are essential regulators of numerous biological processes in animals, including adipogenesis. Despite the abundance of miRNAs associated with adipogenesis, their exact mechanisms of action remain largely unknown. Our study highlights the role of bta-miR-484 as a major regulator of adipocyte proliferation, apoptosis, and differentiation. Here, we demonstrated that the expression of bta-miR-484 initially increased during adipogenesis before decreasing. Overexpression of bta-miR-484 in adipocytes ultimately inhibited cell proliferation and differentiation, reduced the number of EdU fluorescence-stained cells, increased the number of G1 phase cells, reduced the number of G2 and S phase cells, and downregulated the expression of proliferation markers (CDK2 and PCNA) and differentiation markers (CEBPA, FABP4, and LPL). Additionally, overexpression of bta-miR-484 promoted the expression of apoptosis-related genes (Caspase 3, Caspase 9, and BAX), and increased the number of apoptotic cells observed via flow cytometry. In contrast, bta-miR-484 inhibition in adipocytes yielded opposite effects to those observed during bta-miR-484 overexpression. Moreover, luciferase reporter assays confirmed SFRP1 as a target gene of bta-miR-484, and revealed that bta-miR-484 downregulates SFRP1 mRNA expression. These findings offer compelling evidence that bta-miR-484 targets SFRP1, inhibits proliferation and differentiation, and promotes apoptosis. Therefore, these results offer novel insights into the bta-miR-484 regulation of adipocyte growth and development.

Funder

National Natural Science Foundation of China

Key R & D projects in Ningxia Hui Autonomous Region

Leading Talents Fund in Science and Technology Innovation in Ningxia Hui Autonomous Region

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3