Role of Cx43 in iPSC-CM Damage Induced by Microwave Radiation

Author:

Yin Yue1,Xu Xinping1,Li Dayan1ORCID,Yao Binwei1,Wang Haoyu1,Zhao Li1,Wang Hui1,Dong Ji1,Zhang Jing1ORCID,Peng Ruiyun1

Affiliation:

1. Beijing Institute of Radiation Medicine, Beijing 100850, China

Abstract

The heart is one of the major organs affected by microwave radiation, and these effects have been extensively studied. Previous studies have shown that microwave-radiation-induced heart injury might be related to the abnormal expression and distribution of Cx43. In order to make the research model closer to humans, we used iPSC-CMs as the cell injury model to investigate the biological effect and mechanism of iPSC-CM injury after microwave radiation. To model the damage, iPSC-CMs were separated into four groups and exposed to single or composite S-band (2.856 GHz) and X-band (9.375 GHz) microwave radiation sources with an average power density of 30 mW/cm2. After that, FCM was used to detect cell activity, and ELISA was used to detect the contents of myocardial enzymes and injury markers in the culture medium, and it was discovered that cell activity decreased and the contents increased after radiation. TEM and SEM showed that the ultrastructure of the cell membrane, mitochondria, and ID was damaged. Mitochondrial function was aberrant, and glycolytic capacity decreased after exposure. The electrical conduction function of iPSC-CM was abnormal; the conduction velocity was decreased, and the pulsation amplitude was reduced. Wb, qRT-PCR, and IF detections showed that the expression of Cx43 was decreased and the distribution of Cx43 at the gap junction was disordered. Single or composite exposure to S- and X-band microwave radiation caused damage to the structure and function of iPSC-CMs, primarily affecting the cell membrane, mitochondria, and ID. The composite exposure group was more severely harmed than the single exposure group. These abnormalities in structure and function were related to the decreased expression and disordered distribution of Cx43.

Funder

National Natural Science Foundation of China

Comprehensive Research Program

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Human Envirome and Cardiovascular Diseases;Advances in Biochemistry in Health and Disease;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3