Single and Combined Effects of Chlorpyrifos and Glyphosate on the Brain of Common Carp: Based on Biochemical and Molecular Perspective

Author:

Zhang Dongfang1ORCID,Ding Weikai1ORCID,Liu Wei1,Li Liuying1,Zhu Gongming23,Ma Junguo1

Affiliation:

1. Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang 453007, China

2. State Key Laboratory of Antiviral Drugs, Henan Normal University, Xinxiang 453007, China

3. Pingyuan Laboratory, Xinxiang 453007, China

Abstract

Chlorpyrifos (CPF) and glyphosate (GLY) are the most widely used organophosphate insecticide and herbicide worldwide, respectively; co-occurrence of CPF and GLY in aquatic environments occurs where they inevitably have potential hazards to fish. However, the potential mechanisms of CPF and GLY to induce toxicity have not been fully explored. To identify the adverse impacts of CPF and GLY on fish, either alone or in combination (MIX), CPF (25 μg/L) and GLY (3.5 mg/L) were set up according to an environmentally relevant concentration to expose to common carp for 21 days. After exposure, CPF and GLY decreased the activities of acetylcholinesterase and Na+/K+-ATPase, altered monoamine oxidase levels, decreased antioxidant enzyme activities (superoxide dismutase, catalase, glutathione S-transferase and glutamic reductase), and induced the accumulation of malondialdehyde in the carp brain. The parameters in the MIX groups had a greater impact compared to that in the CPF or GLY group, suggesting that both single and combined exposure could affect neurological signaling systems and cause oxidative stress and lipid peroxidation damage in carp brains, and that MIX exposure increases the impact of each pollutant. RNA-seq results showed that single or combined exposure to CPF and GLY induced global transcriptomic changes in fish brains, and the number of differentially expressed genes in MIX-treated carp brains were globally increased compared to either the CPF or GLY groups, suggesting that the effects of co-exposure were greater than single exposure. Further analysis results revealed that the global transcriptomic changes participated in oxidative stress, immune dysfunction, and apoptosis of fish brains, and identified that the P13k-Akt signaling pathway participates in both single and combined exposure of CPF- and GLY-induced toxicity. Taken together, our results demonstrated that the interaction of CPF and GLY might be synergic and provided novel insights into the molecular mechanisms of fish brains coping with CPF and GLY.

Funder

Outstanding Youth Science Foundation of Henan Province

Central Government Guides Local Science and Technology Development Fund

Program for Science & Technology Innovation Talents in Universities of Henan Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3