Tumor Growth Ameliorates Cardiac Dysfunction and Suppresses Fibrosis in a Mouse Model for Duchenne Muscular Dystrophy

Author:

Achlaug Laris1,Awwad Lama1,Langier Goncalves Irina1,Goldenberg Tomer1,Aronheim Ami1ORCID

Affiliation:

1. Department of Cell Biology and Cancer Science, Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, P.O. Box 9649, Haifa 31096, Israel

Abstract

The interplay between heart failure and cancer represents a double-edged sword. Whereas cardiac remodeling promotes cancer progression, tumor growth suppresses cardiac hypertrophy and reduces fibrosis deposition. Whether these two opposing interactions are connected awaits to be determined. In addition, it is not known whether cancer affects solely the heart, or if other organs are affected as well. To explore the dual interaction between heart failure and cancer, we studied the human genetic disease Duchenne Muscular Dystrophy (DMD) using the MDX mouse model. We analyzed fibrosis and cardiac function as well as molecular parameters by multiple methods in the heart, diaphragm, lungs, skeletal muscles, and tumors derived from MDX and control mice. Surprisingly, cardiac dysfunction in MDX mice failed to promote murine cancer cell growth. In contrast, tumor-bearing MDX mice displayed reduced fibrosis in the heart and skeletal and diaphragm muscles, resulting in improved cardiac function. The latter is at least partially mediated via M2 macrophage recruitment to the heart and diaphragm muscles. Collectively, our data support the notion that the effect of heart failure on tumor promotion is independent of the improved cardiac function in tumor-bearing mice. Reduced fibrosis in tumor-bearing MDX mice stems from the suppression of new fibrosis synthesis and the removal of existing fibrosis. These findings offer potential therapeutic strategies for DMD patients, fibrotic diseases, and cardiac dysfunction.

Funder

Ministry of Health

Swiss Technion Society

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference30 articles.

1. Fibroblasts and myofibroblasts in wound healing;Darby;Clin. Cosmet. Investig. Dermatol.,2014

2. Cellular and molecular mechanisms of fibrosis;Wynn;J. Pathol.,2008

3. Experimental models of liver fibrosis;Yanguas;Arch. Toxicol.,2016

4. Cardiac fibrosis;Frangogiannis;Cardiovasc. Res.,2021

5. Management of cardiac fibrosis is the largest unmet medical need in heart failure;Diez;Cardiovasc. Res.,2022

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3