Elexacaftor Mediates the Rescue of F508del CFTR Functional Expression Interacting with MSD2

Author:

Bongiorno Roberta1,Ludovico Alessandra1,Moran Oscar1ORCID,Baroni Debora1ORCID

Affiliation:

1. Istituto di Biofisica, CNR, Via De Marini, 6, 16149 Genova, Italy

Abstract

Cystic fibrosis (CF) is one of the most frequent lethal autosomal recessive diseases affecting the Caucasian population. It is caused by loss of function variants of the cystic fibrosis transmembrane conductance regulator (CFTR), a membrane protein located on the apical side of epithelial cells. The most prevalent CF-causing mutation, the deletion of phenylalanine at position 508 (F508del), is characterized by folding and trafficking defects, resulting in the decreased functional expression of the protein on the plasma membrane. Two classes of small-molecule modulators, termed potentiators and correctors, respectively, have been developed to rescue either the gating or the cellular processing of defective F508del CFTR. Kaftrio, a next-generation triple-combination drug, consisting of the potentiator ivacaftor (VX770) and the two correctors tezacaftor (VX661) and elexacaftor (VX445), has been demonstrated to be a life-changing therapeutic modality for the majority of people with CF worldwide. While the mechanism of action of VX770 and VX661 is almost known, the precise mechanism of action and binding site of VX445 have not been conclusively determined. We investigated the activity of VX445 on mutant F508del to identify the protein domains whose expression is mostly affected by this corrector and to disclose its mechanisms of action. Our biochemical analyses revealed that VX445 specifically improves the expression and the maturation of MSD2, heterologously expressed in HEK 293 cells, and confirmed that its effect on the functional expression of defective F508del CFTR is additive either with type I or type II CFTR correctors. We are confident that our study will help to make a step forward in the comprehension of the etiopathology of the CF disease, as well as to give new information for the development and testing of combinations of even more effective correctors able to target mutation-specific defects of the CFTR protein.

Funder

Italian Cystic Fibrosis Research Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3