Comparative Study of Energy Performance between Chip and Inlet Temperature-Aware Workload Allocation in Air-Cooled Data Center

Author:

Bai Yan,Gu LijunORCID,Qi Xiao

Abstract

Improving the energy efficiency of data center has become a research focus in recent years. Previous works commonly adopted the inlet temperature constraint to optimize the thermal environment in the data center. However, the inlet temperature-aware method cannot prevent the servers from over-cooling. To cope with this issue, we propose a thermal-aware workload allocation strategy with respect to the chip temperature constraint. In this paper, we conducted a comparative evaluation of the performance between the chip and inlet temperature-aware workload allocation strategies. The workload allocation strategies adopt a POD-based heat recirculation model to characterize the thermal environment in data center. The contribution of the temperature-dependent leakage power to server power consumption is also considered. We adopted a sample data center under constant-flow and variable-flow cooling air supply to evaluate the performance of these two different workload allocation strategies. The comparison results show that the chip temperature-aware workload allocation strategy prevents the servers from over-cooling and significantly improves the energy efficiency of data center, especially for the case of variable-flow cooling air supply.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data center server workload and infrastructure control based on a joint RSM and CFD approach;Journal of Building Engineering;2023-10

2. Towards complete dis-aggregation of data center rack power using light-weight mechanisms;2022 IEEE 15th International Conference on Cloud Computing (CLOUD);2022-07

3. Energy, exergy and computing efficiency based data center workload and cooling management;Applied Energy;2021-10

4. Energy and Exergy-Aware Workload Assignment for Air-Cooled Data Centers;Proceedings of the Twelfth ACM International Conference on Future Energy Systems;2021-06-22

5. Energy Conservation with Open Source Ad Blockers;Technologies;2020-03-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3