Effects of Iron Supplementation on Testicular Function and Spermatogenesis of Iron-Deficient Rats

Author:

Tsao Chih-WeiORCID,Liao Yuan-Ru,Chang Ting-Chia,Liew Yih-Fong,Liu Chin-Yu

Abstract

Iron deficiency is the most common micronutrient deficiency in the world. Previous studies have shown that iron deficiency increases oxidative stress and decreases antioxidant enzymes, and studies of male infertility indicated that oxidative stress may affect male reproductive functions. The aim of this study was to investigate the effects of iron supplementation on spermatogenesis and testicular functions in iron-deficient rats. Three-week-old male Sprague Dawley (SD) rats were randomly divided into two groups: an iron-adequate control (AI group, 35 ppm FeSO4) and an iron-deficient group (ID group, <5 ppm FeSO4). After three weeks, the iron-deficient group was divided into an original iron-deficient group and five iron-supplemented groups, the latter fed diets containing different doses of FeSO4 (6, 12, 18, 24, and 35 ppm). After five weeks, blood and testis tissue were analyzed. We presented as median (interquartile range, IQR) for continuous measurements and compared their differences using the Kruskal–Wallis test followed by the Mann–Whitney U test among groups. The results showed that as compared with the AI group, the ID group had significantly lower serum testosterone and poorer spermatogenesis (The medians (QR) were 187.4 (185.6–190.8) of AI group vs. 87.5 (85.7–90.4) of ID group in serum testosterone, p < 0.05; 9.3 (8.8–10.6) of AI group vs. 4.9 (3.4–5.4) of ID group in mean testicular biopsy score (MTBS], p < 0.05); iron supplementation reversed the impairment of testis tissue. In the testosterone biosynthesis pathway, iron supplementation improved the lowered protein expressions of hydroxysteroid dehydrogenases caused by iron deficiency. Additionally, decreased activities of glutathione peroxidase and catalase, and increased cleaved-caspase 8 and caspase 3 expression, were found in the iron-deficient rats. The iron-supplemented rats that received > 12 ppm FeSO4 exhibited improvements in antioxidant levels. In conclusion, iron supplementation can abrogate testis dysfunction due to iron deficiency through regulation of the testicular antioxidant capacity.

Funder

Ministry of Science and Technology of Taiwan

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3