Abstract
The article presents a numerical analysis of the process of damage of structural steel, the scope of which encompassed the estimation of the time to failure of a structural component. The analysis was conducted using the Gurson–Tvergaard–Needleman material model, which takes into account the influence of microdefects on material strength. Considered was a plate element with a central hole modelling the material discontinuity that may arise in a structural component as a result of corrosion. The conducted simulation permitted an analysis of the phenomenon of nucleation and evolution of microdamage in S235JR steel, which allowed, for the analysed component, the detection of the initiation of microdamages and their development in the area susceptible to damage. Changes to the state of stress taking place during plastic deformation of structural steel due to the evolution of microdefects of the material structure were analysed. Presented are the results of this research, in which the stress state described by the stress triaxiality in relation to the changes in the volumetric fraction of voids determining the size of microdefects was given a detailed analysis.
Subject
General Materials Science,Metals and Alloys
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献