Machine Learning for Detection of Muscular Activity from Surface EMG Signals

Author:

Di Nardo FrancescoORCID,Nocera AntonioORCID,Cucchiarelli AlessandroORCID,Fioretti Sandro,Morbidoni ChristianORCID

Abstract

Background: Muscular-activity timing is useful information that is extractable from surface EMG signals (sEMG). However, a reference method is not available yet. The aim of this study is to investigate the reliability of a novel machine-learning-based approach (DEMANN) in detecting the onset/offset timing of muscle activation from sEMG signals. Methods: A dataset of 2880 simulated sEMG signals, stratified for signal-to-noise ratio (SNR) and time support, was generated to train a hidden single-layer fully-connected neural network. DEMANN’s performance was evaluated on simulated sEMG signals and two different datasets of real sEMG signals. DEMANN was validated against different reference algorithms, including the acknowledged double-threshold statistical algorithm (DT). Results: DEMANN provided a reliable prediction of muscle onset/offset in simulated and real sEMG signals, being minimally affected by SNR variability. When directly compared with state-of-the-art algorithms, DEMANN introduced relevant improvements in prediction performances. Conclusions: These outcomes support DEMANN’s reliability in assessing onset/offset events in different motor tasks and the condition of signal quality (different SNR), improving reference-algorithm performances. Unlike other works, DEMANN’s adopts a machine learning approach where a neural network is trained by only simulated sEMG signals, avoiding the possible complications and costs associated with a typical experimental procedure, making this approach suitable to clinical practice.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3