A Dynamic Calibration of Optical Fiber DTS Measurements Using PEST and Reference Thermometers

Author:

Ghafoori YaserORCID,Vidmar Andrej,Kryžanowski Andrej

Abstract

Temperature measurements are widely used in structural health monitoring. Optical fiber distributed temperature sensors (DTS) are developed, based on Raman spectroscopy, to measure temperature with relatively high accuracy and short temporal and spatial resolutions. DTS systems provide an extensive number of temperature measurements along the entire length of an optical fiber that can be extended to tens of kilometers. The efficiency of the temperature measurement strongly depends on the calibration of the DTS data. Although DTS systems internally calibrate the data, manual calibration techniques were developed to achieve more accurate results. Manual calibration employs reference sections or points with known temperatures and the DTS scattering data to estimate the calibration parameters and calculate temperature along the optical fiber. In some applications, manual calibration is subjected to some shortages, based on the proposed fiber installation configuration and continuity of calibration. In this article, the manual calibration approach was developed using the model-independent Parameters Estimation (PEST), together with the external temperature sensors as references for the DTS system. The proposed method improved manual calibration in terms of installation configuration, continuity of dynamic calibration, and estimation of the calibration parameters.

Funder

Slovenian Research Agency

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference30 articles.

1. Raman Spectroscopy;Long,1977

2. Practical Raman Spectroscopy;Vandenabeele,2013

3. Infrared and Raman Spectroscopy: Principals and Spectral Interpretation;Larkin,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3