Construction of a Lectin–Glycan Interaction Network from Enterohemorrhagic Escherichia coli Strains by Multi-omics Analysis

Author:

Cho Seung-Hak,Lee Kang Mo,Kim Cheorl-Ho,Kim Sung Soon

Abstract

Enterohemorrhagic Escherichia coli (EHEC) causes hemorrhagic colitis and hemolytic uremic syndrome. EHEC infection begins with bacterial adherence to the host intestine via lectin-like adhesins that bind to the intestinal wall. However, EHEC-related lectin–glycan interactions (LGIs) remain unknown. Here, we conducted a genome-wide investigation of putative adhesins to construct an LGI network. We performed microarray-based transcriptomic and proteomic analyses with E. coli EDL933. Using PSORTb-based analysis, potential outer-membrane-embedded adhesins were predicted from the annotated genes of 318 strains. Predicted proteins were classified using TMHMM v2.0, SignalP v5.0, and LipoP v1.0. Functional and protein–protein interaction analyses were performed using InterProScan and String databases, respectively. Structural information of lectin candidate proteins was predicted using Iterative Threading ASSEmbly Refinement (I-TASSER) and Spatial Epitope Prediction of Protein Antigens (SEPPA) tools based on 3D structure and B-cell epitopes. Pathway analysis returned 42,227 Gene Ontology terms; we then selected 2585 lectin candidate proteins by multi-omics analysis and performed homology modeling and B-cell epitope analysis. We predicted a total of 24,400 outer-membrane-embedded proteins from the genome of 318 strains and integrated multi-omics information into the genomic information of the proteins. Our integrated multi-omics data will provide a useful resource for the construction of LGI networks of E. coli.

Funder

Korea National Institute of Health

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3