Optimization of Land-Use Structure Based on the Trade-Off Between Carbon Emission Targets and Economic Development in Shenzhen, China

Author:

Han Dang,Qiao Ruilin,Ma Xiaoming

Abstract

The approach of choosing an effective low-carbon land-use structure by multi-objective methods is commonly used in land-use planning. A common methodology is to calculate carbon emissions and conduct scenario simulations for the future. However, most Chinese cities have not implemented the methods for monitoring carbon emissions proposed by the Intergovernmental Panel on Climate Change (IPCC), especially Shenzhen, which is one of the fastest-growing cities in China. This study first calculated the carbon emissions for a typical year in Shenzhen under the guidance of the IPCC. Second, nighttime light data were used to spatialize the gross domestic product to obtain the economic benefit coefficients of the various land types. Finally, a multi-objective linear programming model was used to optimize the land-use structure under different scenarios for 2020 and 2025. The results show that (i) energy consumption contributed the most to local carbon emissions in 2016, at 94.75%; (ii) carbon emissions from paddy fields, animals, and humans were the second most dominant source; (iii) the intensity of carbon emissions from different land types in 2016 was variable; and (iv) compared with the natural scenario, an optimized land-use structure could reduce carbon emissions by 5.97% by 2020 and 12.61% by 2025. Under ideal simulation conditions, the simulated land-use pattern could not only meet the requirements of economic and social development, but also could effectively reduce carbon emissions, which is of great value to land managers and decision-makers.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3