Suitability of Totora (Schoenoplectus californicus (C.A. Mey.) Soják) for Its Use in Constructed Wetlands in Areas Polluted with Heavy Metals

Author:

Blanco Juan

Abstract

Schoenoplectus californicus subsp. tatora (totora) is an endemic plant from wetlands in South America’s Altiplano region. In the endorheic Titicaca-Desaguadero-Poopó-Salar de Coipasa system (TDPS), totora can be found along rivers, lakes, and shallow ponds. Lake Uru-Uru is a minor lake placed upstream of Lake Poopó, and it gets water inflows from the Desaguadero River, the city of Oruro and several mining and metallurgic complexes. Polluted waters from these origins, together with natural high salinity and high presence of As and Pb, make Lake Uru-Uru an ideal location to search for plant species suitable to be used in constructed and restored wetlands under pollution stress, particularly in systems with high pH and salty waters. To test if totora could meet such requirements, healthy plants were collected at two sites in Lake Uru-Uru with different exposure to polluted inflows. Chemical composition of different organs (leaves, rhizomes and roots) were compared. Results indicated totora’s capacity to withstand high concentrations of a cocktail of multiple pollutants and heavy metals. Particularly, this research showed totora as a multi-hyperaccumulator (concentrations in shoots higher than 1000 mg kg−1) for As, Fe and Ni. These results, combined with totora’s intrinsic high rates of biomass production, slow decomposition rates and its value as raw material for local craftwork and industrial uses, support the recommendation to use totora in constructed or restored wetlands, particularly in sites polluted with heavy metals, and in waters with high salinity.

Funder

Agencia Española de Cooperación Internacional para el Desarrollo

Departamento de Educación, Gobierno de Navarra

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3