Methodology of Temperature Monitoring in the Process of CNC Machining of Solid Wood

Author:

Igaz Rastislav,Kminiak Richard,Krišťák ĽubošORCID,Němec Miroslav,Gergeľ Tomáš

Abstract

The issue of the change in tool temperature as a result of the machining process is presented in this paper. The aim of the paper is to put forward a proposal and subsequently to verify the methodology of temperature monitoring in the process of computer numerical control (CNC) machining in real time. Subsequently, the data can be used in the process of adaptive machine-tool control. Experiments were used to determine whether the research method is appropriate. Oak, beech and spruce wood turning blanks with the thickness of 20 mm were machined using a 5-axis CNC machining centre. A temperature change observation resulting from the changes in parameters of the removed layer was used to test whether the research method is relevant. Parameters of the removed layer were affected by the changes in feed rate in the range from 1 ÷ 5 m·min−1 in the removed layer (1–5 mm) or in wood species used in the experiment. As emerges from the proposed methodology, it is possible to monitor the changes in tool temperature responding to minimal changes in technological parameters on a relatively small size of a milled surface quite accurately. Sensitivity to given changes in technological parameters as well as the importance of the methodology was proven.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference48 articles.

1. Dependence of roughness change and crack formation on parameters of wood surface embossing;Gaff;Wood Res.,2016

2. Granulometric Analysis of Sanding Dust from Selected Wood Species

3. Analysis of vibration in wood chipping process;Vlčková;Akustika,2017

4. An Exploratory Assessment of FSC Chain of Custody Certification Benefits in Croatian Wood Industry

5. Granularity of sand wood dust from narrow belt sanding machine;Očkajová;Acta Fac. Xylologiae,2013

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3