Electrochromic Polymers: From Electrodeposition to Hybrid Solid Devices

Author:

Sare Hadarou1,Dong Dongmei1ORCID

Affiliation:

1. Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA

Abstract

This paper reports on the linear colorimetric and electrochromic (EC) characteristics of electrodeposited polyaniline (PANI) films. This paper also investigates the infrared EC properties of acid-doped PANI films. The electrochemical polymerization method was employed to create a porous and thin PANI film layer onto PET-ITO substrates. This layer was capped with WO3 film to create a gel electrolyte sandwich structure that demonstrates the compatibility of PANI films with cathodic WO3 films in full devices. The electrodeposition of the film was fabricated by applying different voltages and time, with the optimal film quality achieved with the 1.7 V voltage and a 20 min deposition period. The surface morphology, optical performance, electrochemical behavior, and molecular structure evolution are comprehensively studied in this work. The linear colorimetric behaviors and the corresponding significant changes in the structure in Raman spectra build direct strong quantitative relations in EC polymers. The well-defined oxidation and reduction peaks observed in the cyclic voltammetry indicate the ion-diffusion dominant process in the electrochromism of PANI. Significant transitions between the benzene and quinone phases in the Raman spectra are found in the bleached and colored states of polymers. This study enhances the understanding of PANI film structure and electrochemical and associated optical properties, providing more insights into the dual-function EC charge storage polymers and other energy-related functional materials.

Funder

start-up funds

Million Mile Fuel Cell Truck

Department of Energy (DoE), US

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3