An Efficient Electrothermal Model of a Thermoelectric Converter for a Thermal Energy Harvesting Process Simulation and Electronic Circuits Powering

Author:

Dziurdzia Piotr1ORCID,Bratek Piotr1ORCID,Markiewicz Michał2ORCID

Affiliation:

1. Institute of Electronics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow, Poland

2. Faculty of Mathematics and Computer Science, Jagiellonian University, Ul. Łojasiewicza 6, 30-348 Cracow, Poland

Abstract

This paper deals with an electrothermal model of a thermoelectric converter dedicated to performing simulations of coupled thermal and electrical phenomena taking place in harvesting processes. The proposed model is used to estimate the electrical energy gain from waste heat that would be sufficient to supply electronic circuits, in particular autonomous battery-less nodes of wireless sensor networks (WSN) and Internet of Things (IoT) devices. The developed model is not limited to low-power electronic solutions such as WSN or IoT; it can also be scaled up and applied to simulations of considerably higher thermal power conversion. In this paper, a few practical case studies are presented that show the feasibility and suitability of the proposed model for complex simultaneous simulation processes in both the electrical and thermal domains. The first example deals with a combined simulation of the electrothermal model of a thermoelectric generator (TEG) and an electronic harvester circuit based on Analog Devices’ power management integrated circuit LTC3108. The second example relates to the thermalization effect in heat sink-less harvesting applications that could be mitigated by a pulse mode operation. The unique contribution and advancement of the model is the hierarchical structure for scaling up and down, incorporating the complexity of the Seebeck effect, the Joule effect, heat conduction, as well as the temperature dependence of the used materials and the thermoelectric pellet geometries. The simulations can be performed in steady as well as transient states under changing electrical loads and temperatures.

Funder

AGH University of Krakow

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference67 articles.

1. (2023, November 18). Technavio Reports. Available online: https://www.technavio.com/.

2. (2023, November 18). State of IoT 2023: Number of Connected IoT Devices Growing 16% to 16.7 Billion Globally. Available online: https://iot-analytics.com/number-connected-iot-devices/.

3. (2023, November 08). Global IoT Connectivity Market Report and Forecast 2023–2028. Available online: www.researchandmarkets.com.

4. (2023, November 08). United Nations, Department of Economic and Social Affairs, Population Division, World Population Prospects, United Nations. Available online: https://esa.un.org/unpd/wpp/Download/Standard/Population/.

5. Priya, S., and Inman, D.J. (2008). Energy Harvesting Technologies, Springer.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3