A Critical Review of the Environmental Performance of Bifacial Photovoltaic Panels

Author:

Maniscalco Manfredi1,Longo Sonia2ORCID,Miccichè Gabriele3,Cellura Maurizio2,Ferraro Marco1ORCID

Affiliation:

1. Consiglio Nazionale delle Ricerche, Istituto di Tecnologie Avanzate per l’Energia “Nicola Giordano”, Viale delle Scienze Edificio 9, 90128 Palermo, Italy

2. Department of Engineering, University of Palermo, Viale delle Scienze Edificio 9, 90128 Palermo, Italy

3. Centre for Sustainability and Ecological Transition, University of Palermo, Piazza Marina 61, 90133 Palermo, Italy

Abstract

Bifacial photovoltaic (BPV) panels represent one of the main solar technologies that will be used in the near future for renewable energy production, with a foreseen market share in 2030 of 70% among all the photovoltaic (PV) technologies. Compared to monofacial panels, bifaciality can ensure a gain in energy production per unit panel area together with a competitive cost. However, it is of paramount importance to identify whether there is also an environmental benefit when adopting bifacial technologies as opposed to traditional monofacial ones. To obtain a proper insight into the environmental impact, this paper reviews the Life Cycle Assessment (LCA) studies of bifacial solar panels, identifying the most crucial processes and materials that raise environmental burdens. The analysis also contributes to determining whether the major aspects that influence energy production in real operation scenarios and, most of all, that can ensure the gain associated with bifaciality, are considered and how these can further affect the overall environmental impacts. In this sense, it was found that the installation parameters like the mounting structure, or the choice of ground material to raise the albedo as well as the diffuse irradiation that hits the rear surface of thepanel, are commonly not considered during LCA analysis. However, none of the analyzed studies address the issue in a comprehensive way, hampering an effective comparison between both the different works and traditional monofacial PV panels. Recommendations for future LCAs are finally proposed.

Funder

Italian Ministry of Research

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference39 articles.

1. (2023, October 24). Available online: https://www.iea.org/Reports/Solar-Pv.

2. Bouman, E.A. (2020). A Life Cycle Perspective on the Benefits of Renewable Electricity Generation, European Topic Centre on Climate Change Mitigation and Energy.

3. Global Available Solar Energy under Physical and Energy Return on Investment Constraints;Dupont;Appl. Energy,2020

4. Environmental Impacts of Solar Energy Systems: A Review;Rabaia;Sci. Total Environ.,2021

5. Performance Assessment of a Bifacial PV System Using a New Energy Estimation Model;Sahu;Sol. Energy,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3