Affiliation:
1. State Grid Gansu Electric Power Company, Lanzhou 730000, China
2. Tsinghua Sichuan Energy Internet Research Institute, Chengdu 610000, China
Abstract
With the continuous development of large-scale wind and photovoltaic power worldwide, the net load fluctuation of systems is increasing, thereby imposing higher demands for power supply assurance and new energy consumption capacity within emerging power systems. It is imperative to establish a quantifiable and efficient model for planning new power systems, to propose an analytical approach for determining optimal evolutionary paths, and to advance research on flexible resource planning across wide areas. In this paper, based on the simplified operating characteristics of multi-type flexible resources, a source-grid-load-storage collaborative planning and evolution analysis framework is established. Secondly, the lowest total cost of the whole life cycle of the system is taken as the optimization goal, the multiple flexible resource investment decisions and production operation constraints of various flexible resources on all sides of the system are considered, and the source-grid-load-storage planning model is established. Then, through the investment decision-making strategy setting of the system in different planning level years, the evolutionary path analysis method of the whole life cycle economy and weighted environmental protection benefit of the system is given. Finally, by taking the sending-end power grid in Gansu Province as an example, a case study is carried out. Calculations of new energy, key channels within the province, energy storage capacity, and load-side response capacity requirements for 2025, 2030, and 2060 are optimized. Based on the above analysis, the optimal evolution path of the power grid is proposed. When considering the weighted benefits of economy and environmental protection, the greater the weight of environmental protection benefits, the greater the possibility of choosing a radical scheme. The model and method proposed in this paper can provide technical reference for the future development planning and evolution analysis of new power systems.
Funder
Major Science and Technology Special Project of Gansu Province
Management Consulting Project of Economic and Technological Research Institute of Gansu Electric Power Company
State Grid
State Grid Gansu Electric Power Company
Reference25 articles.
1. (2023). New Power System Development Blue Book, National Energy Administration.
2. Energy Research Institute, and National Development and Reform Commission (2015). Research on the Development Scenario and Path of China’s 2050 High-Proportion Renewable Energy, Energy Research lnstitute, National Development and Reform Commission.
3. IEA (2020). Power Systems in Transition, IEA.
4. Yang, B., Li, Y., Yao, W., Jiang, L., Zhang, C., Duan, C., and Ren, Y. (2023). Optimization and Control of New Power Systems under the Dual Carbon Goals: Key Issues, Advanced Techniques, and Perspectives. Energies, 16.
5. Optimal coordination of G2V and V2G to support power grids with high penetration of renewable energy;Nguyen;IEEE Trans. Transp. Electrif.,2015
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献