Review on Battery State Estimation and Management Solutions for Next-Generation Connected Vehicles

Author:

Di Luca Giuseppe12ORCID,Di Blasio Gabriele2ORCID,Gimelli Alfredo3ORCID,Misul Daniela Anna1ORCID

Affiliation:

1. Department of Energy (DENERG), Politecnico di Torino, 10125 Torino, Italy

2. Istituto di Scienze e Tecnologie per la Mobilità Sostenibili (STEMS), National Research Council, 80125 Napoli, Italy

3. Department of Industrial Engineering (DII), Università di Napoli Federico II, 80126 Napoli, Italy

Abstract

The transport sector is tackling the challenge of reducing vehicle pollutant emissions and carbon footprints by means of a shift to electrified powertrains, i.e., battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs). However, electrified vehicles pose new issues associated with the design and energy management for the efficient use of onboard energy storage systems (ESSs). Thus, strong attention should be devoted to ensuring the safety and efficient operation of the ESSs. In this framework, a dedicated battery management system (BMS) is required to contemporaneously optimize the battery’s state of charge (SoC) and to increase the battery’s lifespan through tight control of its state of health (SoH). Despite the advancements in the modern onboard BMS, more detailed data-driven algorithms for SoC, SoH, and fault diagnosis cannot be implemented due to limited computing capabilities. To overcome such limitations, the conceptualization and/or implementation of BMS in-cloud applications are under investigation. The present study hence aims to produce a new and comprehensive review of the advancements in battery management solutions in terms of functionality, usability, and drawbacks, with specific attention to cloud-based BMS solutions as well as SoC and SoH prediction and estimation. Current gaps and challenges are addressed considering V2X connectivity to fully exploit the latest cloud-based solutions.

Funder

Italian National Recovery and Resilience Plan

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference168 articles.

1. IEA (2023, April 25). Transport—Topics. Available online: https://www.iea.org/topics/transport.

2. Estimation of tank-to-wheel efficiency functions based on type approval data;Hjelkrem;Appl. Energy,2020

3. (2023, May 03). European Green Deal. Available online: https://climate.ec.europa.eu/eu-action/european-green-deal_en.

4. International Council on Clean Transportation (2023, May 03). Fit for 55: A Review and Evaluation of the European Commission Proposal for Amending the CO2 Targets for New Cars and Vans. Available online: https://theicct.org/publication/fit-for-55-a-review-and-evaluation-of-the-european-commission-proposal-for-amending-the-co2-targets-for-new-cars-and-vans/.

5. Ageing mechanisms in lithium-ion batteries;Vetter;J. Power Sources,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3