Sensitivity Analysis and Multi-Objective Optimization of Skylight Design in the Early Design Stage

Author:

Fang Yuan1,Cho Soolyeon2ORCID,Wang Yanyu3,He Luya4

Affiliation:

1. Department of Applied Human Sciences, Western Kentucky University, Bowling Green, KY 42101, USA

2. School of Architecture, North Carolina State University, Raleigh, NC 27695, USA

3. School of Architecture, Southwest Jiaotong University, Chengdu 611756, China

4. Shanghai TIANHUA Architecture Planning & Engineering Ltd., Shanghai 200235, China

Abstract

Building geometry design decisions are important for energy efficiency and daylight performance. Sensitivity analysis, coupled with optimization, is an important approach to investigate and optimize building geometry in the early design stage. Incorporating skylights is an important daylighting strategy in commercial buildings; however, skylight-to-floor ratio (SFR) is often the only design variable evaluated in precedent studies. More design variables related to skylight geometry, clerestory geometry, skylight material, and building geometry need to be evaluated. This study investigates the skylight design of a 2000-square-meter commercial building. Eighteen design variables are evaluated according to their influence on building energy and daylight performance. One-at-a-time (OAT), linear regression, and Morris sensitivity analysis approaches are utilized to identify the most influential variables. Seven of the twelve building geometry variables and two of the six building material variables are considered as important. Then, a multi-objective optimization with genetic algorithms is processed to find out the optimal design solution. The three objectives are energy use intensity (EUI), daylight autonomy (DA), and daylight uniformity (DU). After the optimization, five candidate design options are picked from the Pareto front. Discussions are made on the features of these designs, and one design is selected as the optimal solution.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3