Soil Mercury Pollution Changes Soil Arbuscular Mycorrhizal Fungal Community Composition

Author:

Mi Yidong12ORCID,Bai Xue3,Li Xinru2,Zhou Min12,Liu Xuesong2,Wang Fanfan2,Su Hailei2,Chen Haiyan2,Wei Yuan2

Affiliation:

1. College of Environment, Hohai University, Nanjing 210098, China

2. State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China

3. Department of Administration Service, Ministry of Ecology and Environment of the People’s Republic of China, Beijing 100006, China

Abstract

Remediation of mercury (Hg)-contaminated soil by mycorrhizal technology has drawn increasing attention because of its environmental friendliness. However, the lack of systematic investigations on arbuscular mycorrhizal fungi (AMF) community composition in Hg-polluted soil is an obstacle for AMF biotechnological applications. In this study, the AMF communities within rhizosphere soils from seven sites from three typical Hg mining areas were sequenced using an Illumina MiSeq platform. A total of 297 AMF operational taxonomic units (OTUs) were detected in the Hg mining area, of which Glomeraceae was the dominant family (66.96%, 175 OTUs). AMF diversity was significantly associated with soil total Hg content and water content in the Hg mining area. Soil total Hg showed a negative correlation with AMF richness and diversity. In addition, the soil properties including total nitrogen, available nitrogen, total potassium, total phosphorus, available phosphorus, and pH also affected AMF diversity. Paraglomeraceae was found to be negatively correlated to Hg stress. The wide distribution of Glomeraceae in Hg-contaminated soil makes it a potential candidate for mycorrhizal remediation.

Funder

National Key Research and Development Program

National Natural Science Foundation of China

Special Fund Project for Environmental Protection of Guangdong Province

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3