Multi-Shape Free-Form Deformation Framework for Efficient Data Transmission in AR-Based Medical Training Simulators

Author:

Kim MyeongjinORCID,Bello FernandoORCID

Abstract

Augmented reality medical training simulators can provide a realistic and immersive experience by overlapping the virtual scene on to the real world. Latency in augmented reality (AR) medical training simulators is an important issue as it can lead to motion sickness for users. This paper proposes a framework that can achieve real-time rendering of the 3D scene aligned to the real world using a head-mounted display (HMD). Model deformation in the 3D scene is categorised into local deformation derived from user interaction and global deformation determined by the simulation scenario. Target shapes are predefined by a simulation scenario, and control points are placed to embed the predefined shapes. Free-form deformation (FFD) is applied to multiple shapes to efficiently transfer the simulated model to the HMD. Global deformation is computed by blending a mapping matrix of each FFD with an assigned weighting value. The local and global deformation are then transferred through the control points updated from a deformed surface mesh and its corresponding weighting value. The proposed framework is verified in terms of latency caused by data transmission and the accuracy of a transmitted surface mesh in a vaginal examination (VE) training simulation. The average latency is reduced to 7 ms, less than the latency causing motion sickness in virtual reality simulations. The maximum relative error is less than 3%. Our framework allows seamless rendering of a virtual scene to the real world with substantially reduced latency and without the need for an external tracking system.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3