Abstract
Cloud computing systems are rapidly evolving toward multicloud architectures supported on heterogeneous hardware. Cloud service providers are widely offering different types of storage infrastructures and multi-NUMA architecture servers. Existing cloud resource allocation solutions do not comprehensively consider this heterogeneous infrastructure. In this study, we present a novel approach comprised of a hierarchical framework based on genetic programming to solve problems related to data placement and virtual machine allocation for analytics applications running on heterogeneous hardware with a variety of storage types and nonuniform memory access. Our approach optimizes data placement using the Hadoop File System on heterogeneous storage devices on multicloud systems. It guarantees the efficient allocation of virtual machines on physical machines with multiple NUMA (nonuniform memory access) domains by minimizing contention between workloads. We prove that our solutions for data placement and virtual machine allocation outperform other state-of-the-art approaches.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献