Abstract
Printed circuit boards (PCBs) have a large number of electrical connection nodes. Exposure to harsh environments may lead to connection faults in these nodes. In the present work, intelligent detection methods for electrical connection faults were studied. Specifically, the fault characteristics of connectors, bonding wires and solder balls in the frequency domain were analyzed. The reflection and transmission parameters of an example filter circuit with electrical connection faults were calculated using the Simulation Program with Integrated Circuit Emphasis (SPICE). With these obtained electrical parameters, three machine learning algorithms were used to detect example electrical connection faults for the example circuit. Based upon the performance evaluations of the three algorithms, one can conclude that machine-learning-based intelligent fault detection is a promising technique in diagnosing circuit faults due to electrical connection issues with high accuracy and lower time cost as compared to current manual processes.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献