Speckle Noise Detection and Removal for Laser Speech Measurement Systems

Author:

Wang Yahui,Zhang Wenxi,Wu Zhou,Kong Xinxin,Zhang Hongxin

Abstract

Laser speech measurement is a new sound capture technology based on Laser Doppler Vibrometry (LDV). It avoids the need for contact, is easily concealed and is ideal for remote speech acquisition, which has led to its wide-scale adoption for military and security applications. However, lasers are easily affected by complex detection environments. Thus, speckle noise often appears in the measured speech, seriously affecting its quality and intelligibility. This paper examines all of the characteristics of impulsive noise in laser measured speech and proposes a novel automatic impulsive noise detection and removal method. This method first foregrounds noise using decorrelation based on a linear prediction (LP) model that improves the noise-to-signal ratio (NSR) of the measured signal. This makes it possible to detect the position of noise through a combination of the average short-time energy and kurtosis. The method not only precisely locates small clicks (with a duration of just a few samples), but also finds the location of longer bursts and scratches (with a duration of up to a hundred samples). The located samples can then be replaced by more appropriate samples whose coding is based on the LP model. This strategy avoids unnecessary processing and obviates the need to compromise the quality of the relatively large fraction of samples that are unaffected by speckle noise. Experimental results show that the proposed automatic speckle noise detection and removal method outperforms other related methods across a wide range of degraded audio signals.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3