An Intelligent Clustering-Based Routing Protocol (CRP-GR) for 5G-Based Smart Healthcare Using Game Theory and Reinforcement Learning

Author:

Ahad Abdul,Tahir MohammadORCID,Sheikh Muhammad Aman,Ahmed Kazi IstiaqueORCID,Mughees Amna

Abstract

With advantages such as short and long transmission ranges, D2D communication, low latency, and high node density, the 5G communication standard is a strong contender for smart healthcare. Smart healthcare networks based on 5G are expected to have heterogeneous energy and mobility, requiring them to adapt to the connected environment. As a result, in 5G-based smart healthcare, building a routing protocol that optimizes energy consumption, reduces transmission delay, and extends network lifetime remains a challenge. This paper presents a clustering-based routing protocol to improve the Quality of services (QoS) and energy optimization in 5G-based smart healthcare. QoS and energy optimization are achieved by selecting an energy-efficient clustering head (CH) with the help of game theory (GT) and best multipath route selection with reinforcement learning (RL). The cluster head selection is modeled as a clustering game with a mixed strategy considering various attributes to find equilibrium conditions. The parameters such as distance between nodes, the distance between nodes and base station, the remaining energy and speed of mobility of the nodes were used for cluster head (CH) selection probability. An energy-efficient multipath routing based on reinforcement learning (RL) having (Q-learning) is proposed. The simulation result shows that our proposed clustering-based routing approach improves the QoS and energy optimization compared to existing approaches. The average performances of the proposed schemes CRP-GR and CRP-G are 78% and 71%, respectively, while the existing schemes, such as FBCFP, TEEN and LEACH have average performances of 63%, 48% and 35% accordingly.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3