Abstract
One of the central aspects of science is systematic problem-solving. Therefore, problem and solution statements are an integral component of the scientific discourse. The scientific analysis would be more successful if the problem–solution claims in scientific texts were automatically classified. It would help in knowledge mining, idea generation, and information classification from scientific texts. It would also help to compare scientific papers and automatically generate review articles in a given field. However, computational research on problem–solution patterns has been scarce. The linguistic analysis, instructional-design research, theory, and empirical methods have not paid enough attention to the study of problem–solution patterns. This paper tries to solve this issue by applying the computational techniques of machine learning classifiers and neural networks to a set of features to intelligently classify a problem phrase from a non-problem phrase and a solution phrase from a non-solution phrase. Our analysis shows that deep learning networks outperform machine learning classifiers. Our best model was able to classify a problem phrase from a non-problem phrase with an accuracy of 90.0% and a solution phrase from a non-solution phrase with an accuracy of 86.0%.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献