Abstract
Negative differential resistance (NDR) is inherent in many electronic devices, in which, over a specific voltage range, the current decreases with increasing voltage. Semiconductor structures with NDR have several unique properties that stimulate the search for technological and circuitry solutions in developing new semiconductor devices and circuits experiencing NDR features. This study considers two-terminal NDR electronic circuits based on multiple-output current mirrors, such as cascode, Wilson, and improved Wilson, combined with a field-effect transistor. The undoubted advantages of the proposed electronic circuits are the linearity of the current-voltage characteristics in the NDR region and the ability to regulate the value of negative resistance by changing the number of mirrored current sources. We derive equations for each proposed circuit to calculate the NDR region’s total current and differential resistance. We consider applications of NDR circuits for designing microwave single frequency oscillators and voltage-controlled oscillators. The problem of choosing the optimal oscillator topology is examined. We show that the designed oscillators based on NDR circuits with Wilson and improved Wilson multiple-output current mirrors have high efficiency and extremely low phase noise. For a single frequency oscillator consuming 33.9 mW, the phase noise is −154.6 dBc/Hz at a 100 kHz offset from a 1.310 GHz carrier. The resulting figure of merit is −221.6 dBc/Hz. The implemented oscillator prototype confirms the theoretical achievements.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献