Anomaly Detection in Automotive Industry Using Clustering Methods—A Case Study

Author:

Guerreiro Marcio TrindadeORCID,Guerreiro Eliana Maria AndrianiORCID,Barchi Tathiana Mikamura,Biluca Juliana,Alves Thiago AntoniniORCID,de Souza Tadano YaraORCID,Trojan FlávioORCID,Siqueira Hugo ValadaresORCID

Abstract

In automotive industries, pricing anomalies may occur for components of different products, despite their similar physical characteristics, which raises the total production cost of the company. However, detecting such discrepancies is often neglected since it is necessary to find the problems considering the observation of thousands of pieces, which often present inconsistencies when specified by the product engineering team. In this investigation, we propose a solution for a real case study. We use as strategy a set of clustering algorithms to group components by similarity: K-Means, K-Medoids, Fuzzy C-Means (FCM), Hierarchical, Density-Based Spatial Clustering of Applications with Noise (DBSCAN), Self-Organizing Maps (SOM), Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and Differential Evolution (DE). We observed that the methods could automatically perform the grouping of parts considering physical characteristics present in the material master data, allowing anomaly detection and identification, which can consequently lead to cost reduction. The computational results indicate that the Hierarchical approach presented the best performance on 1 of 6 evaluation metrics and was the second place on four others indexes, considering the Borda count method. The K-Medoids win for most metrics, but it was the second best positioned due to its bad performance regarding SI-index. By the end, this proposal allowed identify mistakes in the specification and pricing of some items in the company.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3