Risk Assessment of Pipeline Engineering Geological Disaster Based on GIS and WOE-GA-BP Models

Author:

He Bohu,Bai Mingzhou,Shi Hai,Li Xin,Qi Yanli,Li Yanjun

Abstract

Oil and gas pipelines are part of long-distance transportation projects which pass through areas with complex geological conditions and which are prone to geological disasters. Geological disasters significantly affect the safety of pipeline operations. Therefore, it is essential to conduct geological disaster risk assessments in areas along pipelines to ensure efficient pipeline operation, and to provide theoretical support for early warning and forecasting of geological disasters. In this study, the pipeline routes of the Sichuan-Chongqing and Western Hubei management offices of the Sichuan-East Gas Transmission Project were studied. Seven topographic factors—surface elevation, topographic slope, topographic aspect, plane curvature, stratum lithology, rainfall, and vegetation coverage index—were superimposed using the laying method with a total of eight evaluation indicators. The quantitative relationships between the factors and geological disasters were obtained using the geographic information system (GIS) and weight of evidence (WOE). The backpropagation neural network (BP) was optimised using a genetic algorithm (GA) to obtain the weight of each evaluation index. The quantified index was then utilized to identify the geological hazard risk zone along the pipeline. The results showed that the laying method, stratum lithology, and normalised difference vegetation index were the factors influencing hazards.

Funder

Ministry of Science and Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference37 articles.

1. A calculation of landslide thrust force to transverse pipelines;Hao;Acta Petrol. Sin.,2012

2. Early warning and prevention of landslide disaster based on pipeline strain monitoring;He;Nat. Gas Ind.,2011

3. An Exponential Matrix Method for the Buckling Analysis of Underground Pipelines Subjected to Landslide Loads

4. Strain-based design for buried pipelines subjected to landslides

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3