A Multilevel Mapping Strategy to Calculate the Information Content of Remotely Sensed Imagery

Author:

Fang ShiminORCID,Zhou Xiaoguang,Zhang Jing

Abstract

Considering the multiscale characteristics of the human visual system and any natural scene, the spatial autocorrelation of remotely sensed imagery, and the multilevel spatial structure of ground targets in remote sensing images, an information-measurement approach based on a single-level geometrical mapping model can only reflect partial feature information at a single level (e.g., global statistical information and local spatial distribution information). The single mapping model cannot validly characterize the information of the multilevel and multiscale features of the spatial structures inherent in remotely sensed images. Additionally, the validity, practicability, and application range of the results of single-level mapping models are greatly limited in practical applications. In this paper, we present the multilevel geometrical mapping entropy (MGME) model to evaluate the information content of related attribute characteristics contained in remotely sensed images. Subsequently, experimental images with different types of objects, including reservoir area, farmland, water area (i.e., water and trees), and mountain area, were used to validate the performance of the proposed method. Experimental results show that the proposed method can not only reflect the difference in the information of images in terms of spectrum features, spatial structural features, and visual perception but also eliminates the inadequacy of a single-level mapping model. That is, the multilevel mapping strategy is feasible and valid. Additionally, the vector set of the MGME method and its standard deviation (Std) value can be used to further explore and study the spatial dependence of ground scenes and the difference in the spatial structural characteristics of different objects.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3