Optimization Analysis to Evaluate the Relationships between Different Ion Concentrations and Prymnesium parvum Growth Rate

Author:

Liu Shuang-YuORCID,Zhao Rui-Zhi,Qiu Xiao-CongORCID,Guo Qi

Abstract

The purpose of this study was to evaluate the optimum environmental condition required for reaching the maximum growth rate of P. parvum. Eight ions (Na+, K+, CO32−, HCO3−, Ca2+, Mg2+, Cl−, and SO42−) were divided into two groups with a uniform design of 4 factors and 10 levels. The results showed a rising trend in growth rate with increasing ion concentrations. However, concentrations that exceeded the threshold led to a slowdown in the growth rate. Therefore, adequate supply of ion concentrations promoted growth of P. parvum, whereas excessively abundant or deficient ion concentrations inhibited its growth rate. Specifically, the order of impact of the first four ion factors on the growth rate was Na+ > HCO3− > K+ > CO32−. The growth rate of P. parvum reached the maximum theoretical 0.999 when the concentrations of Na+, K+, CO32−, and HCO3− ions were 397.98, 11.60, 3.37, and 33.31 mg/L, respectively. This theoretical growth maximum was inferred from the experimental results obtained in this study. For other ion factors, SO42− had the most influence on the growth rate of P. parvum, followed by Mg2+, Ca2+, and Cl− ions. The growth rate of P. parvum reached the maximum theoretical value of 0.945 when the concentrations of Ca2+, Mg2+, Cl−, and SO42− ions were 11.52, 32.95, 326.29, and 377.31 mg/L, respectively. The findings presented in this study add to our understanding of the growth conditions of P. parvum and provide a theoretical basis for dealing with the water bloom it produces in order to control and utilize it.

Funder

the National Natural Science Foundation of China

Ningxia University first-class discipline (Water conservancy Engineering) construction subsidy project

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3