Pond Energy Dynamics, Evaporation Rate and Ensemble Deep Learning Evaporation Prediction: Case Study of the Thomas Pond—Brenne Natural Regional Park (France)

Author:

Rachid NedjaiORCID,Issam Nedjai,Abdelkrim BensaidORCID,Abdelhamid AzaroualORCID,Amina Haouchine

Abstract

The energy of water masses is a first-order factor that controls the essential physicochemical dynamics of a water body. Its study allows one to understand the roots of the processes that occur at the water-mass, water-atmosphere and water-sediment interfaces. The analysis of the Thomas Pond in the Brenne region gives a valuable overview of energy stock evolution on a yearly scale. It highlights the direct impact of this evolution on thermal stratification and the potential for evaporation and exchange with the atmosphere. The study of evaporation remains challenging due to the complexity of the energy processes and factors involved. Its estimation using formulas, which are mostly empirical, is one of the most used means for studying the process. The studied pond shows a natural stratification during the summer season, however often fragile and disturbed by other climatic factors such as wind and precipitation. This disruption leads to increased exchanges between the pond and the atmosphere. The methods used to estimate pond-atmosphere exchanges, namely evaporation, vary in values ranging between 1 mm/d to > 15 mm/d. Among these methods, three stand out and seem to give reasonable values. This observation is based on the noticeable drop of the pond’s water level during the period of non-communication with the outside, which corresponds to 65 mm. The energy required for this evaporation varies between 600 W/m2 and 1500 W/m2, except for the Smith model, that slightly overestimates this parameter. The regulation of ponds’ water volumes by managers, the increased duration of bungs closure and the intermittence of precipitations in recent years exacerbate the reduction of direct inputs to ponds and the aggravates the impacts of a changing climate. Under the effect of increasing air temperatures, losses by evaporation will also increase significantly. If we generalise the results obtained to all of the Brenne Park water bodies (4500 ponds of the park), losses by evaporation will lead to a significant water deficit of the Loire basin. From this study, the use of deep learning ensemble models was found to provide better short-term predictions (RMSE between 0.003 and 0.006 for all methods), thus confirming the effectiveness of these methods for similar applications.

Funder

Region of Centre-Val-De-Loire

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3