Affiliation:
1. Shenzhen Research Institute of Shandong University, Shenzhen 515100, China
2. Department of Engineering Mechanics, Shandong University, Jinan 250100, China
Abstract
Increasing attention has been paid to the safety and efficiency of batteries due to the rapid development and widespread use of electric vehicles. Solid-state batteries have the advantages of good safety, high energy density, and strong cycle performance, and are recognized as the next generation of power batteries. However, solid-state batteries generate large stress changes due to the volume change of electrode materials during cycling, resulting in pulverization and exfoliation of active materials, fracture of solid-electrolyte interface films, and development of internal cracks in solid electrolytes. As a consequence, the cycle performance of the battery is degraded, or even a short circuit can occur. Therefore, it is important to study the stress changes of solid-state batteries or electrode materials during cycling. This review presents a current overview of chemo-mechanical characterization techniques applied to solid-state batteries and experimental setups. Moreover, some methods to improve the mechanical properties by changing the composition or structure of the electrode materials are also summarized. This review aims to highlight the impact of the stress generated inside solid-state batteries and summarizes a part of the research methods used to study the stress of solid-state batteries, which help improve the design level of solid-state batteries, thereby improving battery performance and safety.
Funder
GuangDong Basic and Applied Basic Research Foundation
Natural Science Foundation of Shandong Province, China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献