Experimental Analysis of Hysteresis in the Motion of a Two-Input Piezoelectric Bimorph Actuator

Author:

Grzybek Dariusz1ORCID

Affiliation:

1. Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland

Abstract

This article presents a comparison of hysteresis courses in the motion of a two-input actuator (bimorph) and hysteresis in the motion of a single-input actuator (unimorph). The comparison was based on the results of laboratory and numerical experiments, the subject of which was an actuator built of three layers: a carrier layer from a glass-reinforced epoxy laminate and two piezoelectric layers from Macro Fiber Composite. The layers were glued together, and electrodes in the Macro Fiber Composite layers were connected to a system that included an analogue/digital board and a voltage amplifier. The main purpose of this research was to compare the characteristic points of the hysteresis curves of the displacement of the bimorph actuator with the characteristic points of the hysteresis curves of the unimorph actuator. Based on the research results, it was noticed that, in the bimorph, the maximum hysteresis and mean hysteresis values increase faster than the maximum displacement of a beam tip. However, values of characteristic input voltages for hysteresis loops—voltage corresponding to a maximum displacement of the actuator beam tip and voltage corresponding to maximum hysteresis—are almost the same for the bimorph and unimorph. From a practical point of view, it was noticed that the unimorph is a better choice compared to the bimorph in applications in which high changes in frequencies of input voltages appear.

Funder

AGH University of Science and Technology within the scope of the Research Program

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3