Transient Fault Signal Identification of AT Traction Network Based on Improved HHT and LSTM Neural Network Algorithm

Author:

Zhou Huan1ORCID,Chen Jianyun1ORCID,Ye Manyuan1ORCID,Fu Qincui1,Li Song1ORCID

Affiliation:

1. State Key Laboratory of Performance and Guarantee of Rail Transportation Infrastructure, East China Jiaotong University, Nanchang 330013, China

Abstract

This paper aims to address the difficult to pinpoint fault cause of the full parallel AT traction power supply system with special structure. The fault characteristics are easily covered up, and high transition impedance only affects the singularity of the wavehead, making the traveling waves hard to identify. Moreover, the classification accuracy of the traditional time-frequency analysis method is not sufficiently high to distinguish precisely. In this paper, a fault classification method of traction network based on single-channel improved Hilbert–Huang transform and deep learning is proposed. This method extracts effective fault features directly from the original fault signals and classifies the fault types at the same time. The accuracy of data categorization is increased by directly applying the Hilbert–Huang transform to fault signals to extract transient fault features and produce one-dimensional feature data, which are analyzed by the time-frequency energy spectrum. Using the similarity recognition method of long-short-term memory neural network, the extracted high-frequency one-dimensional feature data are trained and tested to classify fault signals more accurately. In order to verify the effectiveness of this method, several kinds of short-circuit and lightning strike faults are continuously simulated and verified in this paper. Considering various fault conditions and factors, the proposed improved HHT+LSTM method is compared with the LSTM method for direct processing of the original signals. The improved HHT + LSTM classification algorithm achieves an accuracy of 99.99%.

Funder

National Natural Science Foundation of China

double-class discipline of Traffic Information Engineering and Control of Jiangxi

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3