Comparative Analysis of Energy Demand and CO2 Emissions on Different Typologies of Residential Buildings in Europe

Author:

Coma JuliàORCID,Maldonado José MiguelORCID,de Gracia Alvaro,Gimbernat Toni,Botargues Teresa,Cabeza Luisa F.ORCID

Abstract

The building sector accounts for one third of the global energy consumption and it is expected to grow in the next decades. This evidence leads researchers, engineers and architects to develop innovative technologies based on renewable energies and to enhance the thermal performance of building envelopes. In this context, the potential applicability and further energy performance analysis of these technologies when implemented into different building typologies and climate conditions are not easily comparable. Although massive information is available in data sources, the lack of standardized methods for data gathering and the non-public availability makes the comparative analyses more difficult. These facts limit the benchmarking of different building energy demand parameters such as space heating, cooling, air conditioning, domestic hot water, lighting and electric appliances. Therefore, the first objective of this study consists in providing a review about the common typologies of residential buildings in Europe from the main data sources. This study contains specific details on their architecture, building envelope, floor space and insulation properties. The second objective consists in performing a cross-country comparison in terms of energy demand for the applications with higher energy requirements in the residential building sector (heating and domestic hot water), as well as their related CO2 emissions. The approach of this comparative analysis is based on the residential building typology developed in TABULA/EPISCOPE projects. This comparative study provides a reference scenario in terms of energy demand and CO2 emissions for residential buildings and allows to evaluate the potential implementation of new supply energy technologies in hot, temperate and cold climate regions. From this study it was also concluded that there is a necessity of a free access database which could gather and classify reliable energy data in buildings.

Funder

Horizon 2020 Framework Programme

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference29 articles.

1. Transition to Sustainable Buildings: Strategies and Opportunities to 2050, ISBN 978-92-64-20241-2http://www.iea.org/etp/buildings/

2. Heating and cooling energy trends and drivers in buildings

3. Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildingshttp://www.epbd-ca.eu

4. The 2030 Energy Strategy Targets for Renewables and Greenhouse Gas Reductionshttps://ec.europa.eu/clima/policies/strategies/2030_en

5. Horizon 2020, The EU Framework Programme for Research and Innovationhttp://ec.europa.eu/programmes/horizon2020/en/

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3